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A Remark on Hermite-Lagrange Interpolation
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A simple proof of a recent result of G. Berger and ~1. Tasche concerning the coef
ficients of the Hermite-Lagrange 2-point interpolatien polynomial and uniform
approximation by such polynomials is given. This pwyides an easy access to a
number of consequences of their result which haye attracted considerable interest,
as e.g. properties of certain expansions of completely convex fundons and. i;;
particular, Schur's expansion of sin lIX. r 1991 Academ:c Press. Inc.

1

Let m be a non-negative integer. For a function IE et 2m [0, 1] we intrc
duce the functionals

AoU) = j(O),

A,,(f) = (-1 t (n! (n - 1)!) -I f' 1(2n)(X)(x(1- x))" -1 (1- x) dx
'0

(1:::;; n :::;;m);

BoU) =.r( 1) - 1(0),

.-1

B,,(f) = (-1)" (n! (n _1)!)-1 I 1(211)(X)(x(1- X))"-1 12x- 1) dx
"0

(1:::;; n:::;; mi.

i)a)

By i, g ii we denote the Chebyshev (maximum) norm of a function
gE'6[O,l]. Recently, G. Berger and M. Tasche [2] have obtained the
following remarkably useful result by appeal to the theory of right
invertible operators:
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THEORE:\f (Berger and Tasche). (i) IffEC(f2Tn[0, 1], then the Hermite
Lagrange 2-point interpolation polynomial, i.e., the (unique) polynomial p of
degree (at most) 2m + 1 with

(O~j~m) (2)

is given by
Tn

P=Pm.j(X)= I (an+bnx)(x{l-xW,
n=O

where

(3a)

an = An(f), (0 ~n ~m). (3b)

(ii) If fE Cf}X[O, 1] is a function with the property

lim (2 211 (2n)!) -I II f(2n) II =° (4)

then the series (3a) lvith coefficients (3b) converges uniformly in [0, 1] to f
The purpose of our note is to present a very simple proof of this theorem

and so to provide an easy access to some of its consequences such as, for
example, the positiveness of the coefficients in Schur's expansion of sin nx
(cf. [2, 3]), which motivated the work of Berger and Tasche (for further
examples and references see [2]). As regards the merits of their paper, it
should be noted that formulae (3b) would hardly have been found by a
method different from theirs.

Our proof is based on the following observation: From the relation (5)
below it will become clear that it suffices to prove (3) for polynomials; and
by the linearity of the functionals (1) it will even suffice to consider a
suitable generating system (not necessarily a basis) of polynomials for
which the verification of the identities (3) is a matter of easy calculation.

2

Proof of (i). Let there be n EN, hE Cf}2n[0, 1], g a polynomial of
degree (at most) 2n-1 with g(J)(O)=g(j)(l)=O (0~j~n-2; this restric
tion is void if n = 1). We need the formula

.1 n

J h(2n)(x)g(x)dx= L (-l)i+ 1 (h(J)(l)g(2n-i -I)(l)
o i=O

- h(J)(O) g(2n-i -I)(0)) (5)

which is easily established by repeated integration by parts.
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An arbitrary polynomial P of degree (at most) 2m + 1 can be written :n
the form

m

p(x) = L (a" + bnx){x(1- x))n
n=O

(6a)

with unique coefficients, since the system of polynomials q" = (x(l- X))k,
rk = xqk (k ~ 0) evidently forms a basis in the space of polynomials of
arbitrary degree. We claim that these coefficients satisfy the relations

an = An(p), (6b)

By the linearity of (1) it suffices to consider the elements of the basis intrJ
duced; we have to show that

A ll (r n)=Bn(qn)= 1, An(qn)=Bn(rn)=O

An(qk) = Bn(rk) = 0

(n ~ 0); (7a)

(k#n:k,n;;::O). (7b)

If n = 0, then (7a, b) follows at once on insertion of qk' I"k in (la, c). If
(0::::;) k < n, then q~2n), rfn) both vanish identically and (7b) follows tri
vially. If l::::;n < k, then we combine (1) and (5) with h = qk' resp. h = rb
and g=(x(1-X)j"-l (I-x) or g=(x(1-x))"-i(2x-l), to obtain (7b)
(note that here in each case h(j)(O)=h(j)(I)=O (O::::;j~n), since h,t:
contains a factor (x(1 - X))k - J with k - j ~ k - n ~ 1).

If 1 ::::;n=k, we obtain (7a) directly from (lb, d) by use of the
obvious equalities q~2n) = (- 1)" (2n I!, r~2n) = ((2n + 1):(- n) q;;n) a::d

j'[ i( 1 )J' -"" (. . 1)') -I (.. °\ox> - x ax - I .J. 1+J + . I, J ~ "
From (5) we infer that the equalities

A n(p) = An(f), Bn(p) = BnU) (8)

hold for any two functions p,jEre2f>'[0, 1] with plj)(O)=j(j:(O), p(Jl(l)=

jU)(1) (O::::;j::::;m). Now (6) and (8) together imply that (3) indeed
represents the H. L.-polynomial Pm,f for j on [0, 1]. This proves (i).

3

Proof oj (ii). Let jECGL[O, 1] be a function with property (4). Note
that this condition entails the analogous property for odd derivatives: in
fact, let Xo be any element from [0, 1]. Take Xl E [0, 1J, with: Xl - -'0 I= 1·
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Then ((2n)!) -I (x1- XO)21l jl21l)(X2) ((2n)!) -I (x I - XO)21l 1(21l)(XO) +
((21'1+ l)!)-I (X I- XO)21l 1(21l+1)(xo)+((2n+2)!)-1 (X I-XO)21l+2 p21l+2)(X3)

with suitable numbers X2, X3 between Xo, XI; hence

((21'1 + I)! 22
1l+ I) -I ip21l+ l)(xo)1

~2((2n)! 221l )-1 il 1(2n) II +((2n+2)! 22n +2)-1 11/(2n+2),I.

Summarizing, we may take for granted that (k! 2k )-1 II I(k) I: tends to 0 as
k -+ 0C0. As a consequence, I can be expanded into a power series around
any point Xo E [0, 1], with radius of convergence r = r(xo)~ 1-I xo- ! I.
Clearly I will be approximated by any such series uniformly in any closed
interval contained in (xo- r, X o+ r). In particular, this holds true for
X o= !, with r ~ 1. Splitting up the corresponding power series into an even
and an odd part and applying the identity (x- !)2k = (!-x(l-x))\
we find that I can be approximated by a series of the form
L (all +bnx)(x(l- x)t uniformly for Ix - ~ I~ ~, that is, in [0, 1]. But the
partial sums Pill of this series are just the H.L.-polynomials of I in [0, 1],
since r~)(O) = r;l,)( 1) = 0 (0 ~j ~ m) evidently holds for the remainders
rill =I - Pill· This completes the proof of the theorem.

4

In this section we give a second proof of (6b). For the reasons mentioned
it suffices to consider the two types of polynomials P = 5k = x k + (1 - X)k
and P = tk = x k - (1- xy (k ~ 0). Note that the functions 5k are symmetric
around x =~, and the functions tk are antisymmetric. Consequently the
system {5d, resp. {td, generates the even, resp. odd, polynomials in the
variable x - !.

First we establish the explicit expansions

Sk= L Ckn(x(1-X)t,
O~21l:$;.k

where

O~2n~k

(k~O)

= _ tl((k-n-l) (k-n)) = _ n((k-n-l)_(k-n))Ckll ( 1) 1 + ,dkn ( 1) 1
1'1- 1'1 1'1- 1'1

(9)

(0~2n~k; k~O). We use the conventions (=D=(g)= 1, (-.!I)=O (i~0)).

From the obvious recursions 50 = 2, 51 = 1, 5k = Sk _ 1 - x( 1- x) Sk_ 2' resp.
to=O, t l =-1+2x, tk=tk_I-x(l-x)tk_2 (k~2), we infer the recur
sions coo =2, doo=O; CkO= -dkO = 1 (k~ 1); Ckl = -k, dkl =k-2 (k~2);

ckn=ck--In-ck_2n_l, dkn=dk-In-dk-2n-1 (0<2n~k, k~2). Now
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induction shows that the explicit expressions as given in (9) indeed sha~e

these recursions. Finally we apply the formula fb x l(1- x-)J dx =
i~j! (i + j + 1}!) - I to verify, by an easy calculation, the id~ntities

Our second proof of (6b) is complete.
We mention that C. Buchta [1] in a recent paper on a problem in

geometric probability made use of the above expansion of Sk which he
obtained as an (at first sight very special) consequence of the theorem,
Here we have seen that indeed the general result can be derived from the
special case.
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