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Note
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A simple proof of a recent result of G. Berger and M. Tasche concerning the cosf-
ficients of the Hermite-Lagrange 2-point interpelaticn polynomial and uniform
approximation by such polynomials is given. This provides an easy access tc a
number of consequences of their result which have attracted considerable interest,
as e.g. properties of certain expansions of compietely convex functions and, in
particular, Schur's expansion of sin mx. T 1991 Academc Press. Inc.

Let m be a non-negative integer. For a function fe $>"[0, 1] we intrc-
duce the functionals

Aol 1) =110), ifa)
A =(-1)"(nn—1)H! ch‘z”)(x}(x(i — XV (1 —x)dx
(1<n<m) {ib}

(1<n<m). {1ey

By | g| we denote the Chebyshev (maximum) norm of a function
g€%[0,1]. Recently, G.Berger and M. Tasche [2] have obtained the
following remarkably useful result by appeal to the theory of rignt
invertible operators:
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TueoreM (Berger and Tasche). (i) If fe€%"[0, 1], then the Hermite—
Lagrange 2-point interpolation polynomial, i.e., the (unique) polynomial p of
degree (at most) 2m + 1 with

p0)=£0), pP()=fP1) (0<j<m) (2)
is given by
P=Pm(X)= Y (a,+b,x)(x(1 X)), (3a)
n=0
where
a,=A,f), b,=B,(f) (0<n<m) (3b)

(i) If fe€>*[0,1] is a function with the property
lim (2*(2n)")~" | S| =0 4)

n—

then the series (3a) with coefficients (3b) converges uniformly in [0, 1] to f.

The purpose of our note is to present a very simple proof of this theorem
and so to provide an easy access to some of its consequences such as, for
example, the positiveness of the coefficients in Schur’s expansion of sin nx
(cf. [2, 3]), which motivated the work of Berger and Tasche (for further
examples and references see [2]). As regards the merits of their paper, it
should be noted that formulae (3b) would hardly have been found by a
method different from theirs.

Our proof is based on the following observation: From the relation (5)
below it will become clear that it suffices to prove (3) for polynomials; and
by the linearity of the functionals (1) it will even suffice to consider a
suitable generating system (not necessarily a basis) of polynomials for
which the verification of the identities (3) is a matter of easy calculation.

2

Proof of (i). Let there be ne N, he%>[0,1], g a polynomial of
degree (at most) 2n— 1 with g’(0)=g"(1)=0 (0 <j<n—2; this restric-
tion is void if n=1). We need the formula

Jﬂl h#)(x) g(x) dx = }n: (—1)7+ L (R9Y(1) g =i=1) (1)

J

j=0
—h7(0) g®"~/=1(0)) (5)

]

which is easily established by repeated integration by parts.
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An arbitrary polynomial p of degree (at most) 2m+ I can be written in
the form

Z (a,+ b, x)(x{1 —x}y

o
™

with unique coefficients, since the system of polynomials g, = {x(1 —x)*,
Fr=xq, {k>=0) evidently forms a basis in the space of polynomials of
arbitrary degree. We claim that these coefficients satisfy the relations

anzAn(p.)a bn:Bn(p) (n)()‘,- (635

By the linearity of (1) it suffices to consider the elements of the basis intro-
duced; we have to show that

Air,)=B,q,)=1,  A(q,)=B,(r,)=0  (n=0); gy
An(rk)an(qk)=O’ An(qk)an('k):O (/{#}’,’_ 1{.,"20) (7b}

If n=9, then (7a, b) follows at once on insertion of g,, #, in {ia,c). if
(0<) k<n, then ¢{?, ri® both vanish identically and {7b) follows tri-
vially. If 1 <r <k, then we combine (1) and (5) with #=gq,, resp. 1=y,
and g=(x(1 —x))""!' (1 —x) or g=(x(1—x))"" "(2x—1), to obtain {7b)
{note that here in each case AY(0)=A""(1)=0 (0<j<n), since i/
contains a factor (x(1 —x))* 7/ with k—j>k—n>1).

If 1<n=k, we obtain (7a) directly from {lb,d} by use of the
obvious equalities ¢ =(—1)"(2n)!, r?={(Q2n+1)x—n)q¥" and
fox(t—x) dx=ij1(i+j+ 1)) " (i,j=0)

From (5) we infer that the equalities

Ap)=A4,f)  BJAp)=B,(f) (O<sn<mj (8}

hold for any two functions p, fe ¢*[0, 1] with p/(0)=f"(0), p(1}=
f(1) (0<j<m). Now (6) and (8) together imply that (3) indeed
represents the H. L.-polynomial p,, ,for fon [0, 1]. This proves {i}.

Proof of (ii). Let fe¥>[0, 1] be a function with property (4}. Note
that this condition entails the analogous property for odd derivatives: in
fact, let x, be any element from [0, 17]. Take x, € [0, 1], with jx, —x,| =%



112 GERHARD RAMHARTER

Then ((21)1) 71 (x; —x0) " fP(x2) = ((2m)1) ! (x1 —x0)*" [P x0) +
(2n+1DN 71 (x,—x0)> f2 Dxg) +((20+2)1) 71 (x;—x0)> 2 f2 2 (x3)
with suitable numbers x,, x; between x,, x,; hence

((2n+ 1)| 22n+1)71 |:f(2n+”(x0)§
<A@ 2T FO )+ ((n+ 212202 | fR

Summarizing, we may take for granted that (k! 2¥)~! || f*'| tends to O as
k — «c. As a consequence, f can be expanded into a power series around
any point x,€ [0, 1], with radius of convergence r=r(xy) = 1—|x,—3|.
Clearly f will be approximated by any such series uniformly in any closed
interval contained in (xq—r, Xo+#). In particular, this holds true for
Xo= 1, with r > 1. Splitting up the corresponding power series into an even
and an odd part and applying the identity (x—24)*=(—x(1—x)),
we find that f can be approximated by a series of the form
3 (a,+ b, x)(x(1 —x))" uniformly for | x— 4| <4, that is, in [0, 1]. But the
partial sums p,, of this series are just the H.L.-polynomials of fin [0, 17,
since rP(0)=rP(1)=0 (0<j<m) evidently holds for the remainders
Fp=Jf—pn. This completes the proof of the theorem.

4

In this section we give a second proof of (6b). For the reasons mentioned
it suffices to consider the two types of polynomials p=s, = x*+ (1 — x)*
and p=t,=x*— (1 —x)* (k=0). Note that the functions s, are symmetric
around x =3, and the functions ¢, are antisymmetric. Consequently the
system {s,}, resp. {¢,}, generates the even, resp. odd, polynomials in the
variable x — 3.

First we establish the explicit expansions

= Y Culx(-2),  n= Y dy(1-20)(x(1-x))"  (k>0)

O0<2ngk 0<2n<sk

where

(S ()
)

(0<2n<k; k>0). We use the conventions (Z})=(3)=1, (/,)=0 (i=0)).
From the obvious recursions so=2, 5, =1, s, =5, _; —x(1 —x) 5,_5, resp.
to=0, t,=—14+2x, t,=t,_;—x(1—x)t,_, (k=2), we infer the recur-
sions coo=2, dpo=0; cpo=—do=1 (k= 1); c,y=—k, dy=k—2 (k=2)
Con=Ch—in—=Ch_nn—1> n=Cqx_1,—dp_>,_1 (0<2n<k, k=2) Now
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induction shows that the explicit expressions as given in {9) indeed share
these recursions. Finally we apply the formula {jx{1—x) dx=
P (i+j+ 1)) 7" to verify, by an easy calculation, the identities

Ckn=An(Sk)’ OZBn(Sk)' dknzAn(tk)‘r _zdkn:Bn(zk} (Oszngk%zo"

Our second proof of (6b) is complete.

We mention that C.Buchta [1] in a recent paper cn 2 problem in
geometric probability made use of the above expansion of s, which he
obtained as an (at first sight very special) consequence of the thecrem,
Here we have seen that indeed the general resuit can be derived from the
special case.
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